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Abstract This study is an extension of the stochastic

analysis of transient two-phase flow in randomly hetero-

geneous porous media (Chen et al. in Water Resour Res

42:W03425, 2006), by incorporating direct measurements

of the random soil properties. The log-transformed intrinsic

permeability, soil pore size distribution parameter, and van

Genuchten fitting parameter are treated as stochastic vari-

ables that are normally distributed with a separable

exponential covariance model. These three random vari-

ables conditioned on given measurements are decomposed

via Karhunen–Loève decomposition. Combined with the

conditional eigenvalues and eigenfunctions of random

variables, we conduct a series of numerical simulations

using stochastic transient water–oil flow model (Chen et al.

in Water Resour Res 42:W03425, 2006) based on the

KLME approach to investigate how the number and loca-

tion of measurement points, different random soil

properties, as well as the correlation length of the random

soil properties, affect the stochastic behavior of water and

oil flow in heterogeneous porous media.

Keywords Karhunen–Loève decomposition �
Conditional simulation � Water–oil flow � Uncertainty �
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1 Introduction

Many hazardous organic materials, such as oils, gasoline,

and petrochemicals are widely used in the chemical and

petroleum industry. Accidental releases of these nonaqu-

eous phase liquids (NAPL) to the subsurface are inevitable

and represent a significant threat to water supply and eco-

systems. Although the solubility of NAPLs is often low in

water, the concentration often exceeds drinking water

standards. Thus, a small amount of NAPL can contaminate

large volumes of groundwater over a long period of time.

Therefore, it is very important to understand the processes

associated with contaminant migration and fate. Numerical

multiphase flow models are used to study the various

aspects of these processes in order to conduct risk assess-

ment and design of cost-efficient remediation (e.g. Abriola

1989). Another primary application of multiple fluid sys-

tems is petroleum reservoir engineering, which depends on

the understanding of reservoir mechanics to design

schemes for efficient oil recovery. A petroleum reservoir is

a complicated mixture of hydrocarbon fluids, brine, porous

rock and fractures. The structure of the void space is tor-

tuous and heterogeneous, which influence and even

dominate the fluid flow. Complete characterization of

subsurface properties is impossible. Many researchers have

resorted to stochastic modeling of subsurface flow in the

last two decades (Dagan 1989; Gelhar 1993; Zhang 2002).

This approach assumes hydrological variables are uncer-

tain and treats them as stochastic processes; this defines

flow model in a stochastic context rather than in the tra-

ditional deterministic framework, and predicts the output in

terms of moments, usually the means and covariances.

Zhang and Lu (2004) proposed a new stochastic

approach, called KLME, based on Karhunen–Loève

decomposition and polynomial expansions, and applied it

to saturated flow models. Yang et al. (2004) extended

KLME to analysis of saturated–unsaturated flow described

by Richard’s equation. Chen et al. (2005, 2006) devel-

oped a stochastic multiphase flow model following the
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same approach. These studies demonstrated the accuracy

and efficiency of KLME over traditional Monte Carlo

simulation or other stochastic moment approaches. How-

ever, the accuracy of KLME method, compared to Monte

Carlo results, decrease as the variations of soil properties

increase. Zhang and Lu (2004) show the KLME method

is very accurate when the variance of the log hydraulic

conductivity is 2.0, and not good at 4.0. Many studies in

conditional simulation indicate that conditioning on

measurements of the log hydraulic conductivity can

reduce its overall uncertainty, especially in the vicinity of

the conditioning points, which may reduce the predictive

uncertainties of flow and transport (Dagan 1982;

Guadagnini and Neuman 1999a, b; Lu et al. 2002;

Tartakovsky et al. 1999). Therefore, conditional simula-

tion will enable KLME to be applied effectively in flow

systems with strongly heterogeneous fields and more

accurate in moderate heterogeneous soil. Lu and Zhang

(2004) conducted conditional simulations of saturated

flow using KLME by incorporating measurements of the

log hydraulic conductivity. The key step is to derive and

calculate the conditional eigenvalues and eigenfuctions

through unconditional ones of log hydraulic conductivity

using kriging techniques. Running the stochastic saturated

flow model with these conditional eigenvalues and

eigenfuctions leads to the conditional simulations. In this

study, we extend their work from the saturated flow to the

transient water–oil flow system with three random input

variables, including log intrinsic permeability Y, log pore

size distribution parameter b, and log van Genuchten

fitting parameter �n; with measurements in various loca-

tions. We design a series of scenarios simulated by the

stochastic KLME flow model to examine how the location

and number of measurements, and the correlation length

of covariance of these three random input variables,

influence the magnitude and distribution of uncertainties

of predictive variables.

2 KL decomposition of conditional random field

A short description of Karhunen–Loève (KL) decomposi-

tion of unconditional random fields is given below for

readers to better understand conditional cases. The KL

decomposition of a stochastic process a(x,h) is based on the

spectral decomposition of the covariance function of a,

Ca(x,y), with a set of orthogonal polynomials. Here, x and

y are spatial locations, and the argument h denotes the

random nature of the corresponding quantity. Ca(x,y) is

symmetrical and positive definite, whose eigenfunctions

are mutually orthogonal and form a complete set spanning

the function space to which a(x,h) belongs (Ghanem and

Dham 1998). The mean-removed stochastic process a0(x,h)

can be expanded as follows (Karhunen 1947; Loève 1948;

Zhang and Lu 2004; Chen et al. 2005):

a0ðx; hÞ ¼
X1

n¼1

nnðhÞ
ffiffiffiffiffi
kn

p
/nðxÞ; ð1Þ

where, kn and /n(x) are the eigenvalues and

eigenfunctions of the covariance kernel Ca(x,y),

respectively. /n(x) are orthogonal deterministic functions

and form a complete set

Z

X

/nðxÞ/mðxÞdx ¼ dnm; ð2Þ

where X denotes the spatial domain where a(x,h) is

defined. Eigenvalues and eigenfunctions can be solved

from the Fredholm equation

Z

X

Caðx; yÞ/ðxÞdx ¼ k/ðyÞ: ð3Þ

As defined, {nn(h)} forms a set of orthogonal random

variables, and has properties of hnn(h)i = 0, and

hnn(h)nm(h)i = dnm, and dnm is the Krönecker delta

function. For separable exponential covariance function

such as

Ca x; yð Þ ¼ r2
a exp �

X

i

xi � yij j
gi

 !
; ð4Þ

where r2
a and gi are the variance and correlation length of a

(x,h) in the ith direction, analytical solutions of eigenvalues

and eigenfunctions can be obtained by combing one

dimensional analytical solution in each direction. For the

general case, the eigenvalues and eigenfunctions have to be

solved numerically via Galerkin-type method (Ghanem and

Spanos 1991).

Assume a is measured at Na locations, we can obtain the

conditional mean hai(C) and variance C(C)
a using the kriging

method:

a xð Þh i Cð Þ ¼ a xð Þh i þ
XNa

i¼1

li xð Þ a xið Þ � a xið Þh i½ �; ð5Þ

C Cð Þ
a x; yð Þ ¼ Ca x; yð Þ �

XNa

i;j¼1

li xð Þlj yð ÞCa xi; xj

� �
; ð6Þ

where ha(x)i and Ca(x,y) are unconditional mean and

covariance. Weighting coefficients li(x) represent the

relative significance of each measurement a(xi) in

predicting the hai(C) at location x, and can be determined

from the following equations:
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XNa

i¼1

li xð ÞCa xi; xj

� �
¼ Ca x; xj

� �
; j ¼ 1; 2; . . .;Na: ð7Þ

Apparently, the two-point conditional covariance

C(C)
a (x,y) is no longer stationary as the unconditional

covariance, and depends on the locations x and y, instead

of their separation distance. Generally, the corresponding

eigenvalues k(C)
n and eigenfunctions /(C)

n have to be solved

numerically (Ghanem and Spanos 1991), which is

comparably expensive, especially if one needs to update

eigenvalues and eigenfunctions sequentially because of

introducing new conditioning points. Lu and Zhang (2004)

related the conditional eigenvalues and eigenfuctions to

their unconditional counterpart kn and /n. The later can be

solved easily for a special case such as a two-dimensional

rectangular or three-dimensional brick-shaped domain.

Since the unconditional eigenfuctions /n are complete,

the basic idea of this algorithm is to expand li(x) and /(C)
n

based on /n (Lu and Zhang 2004):

li xð Þ ¼
X1

k¼1

lik/k xð Þ; ð8Þ

/ Cð Þ xð Þ ¼
X1

k¼1

dk/k xð Þ; ð9Þ

where lik is coefficients determined by

XNa

i¼1

Ca xi; xj

� �
lik ¼ kk/k xj

� �
;

j ¼ 1; 2; . . .;Na; k ¼ 1; 2; . . .

ð10Þ

and dk is components of eigenvector solved from the

following eigen-problem.

kkdk �
X1

m¼1

XNa

i;j¼1

Ca xi; xj

� �
limlik

 !
dm ¼ k Cð Þdk;

k ¼ 1; 2; . . .

ð11Þ

The computational efforts of obtaining conditional

eigenvalues and eigenfunctions in this way are much less

than that of solving them numerically via Galerkin-type

methods. Moreover, the conditional eigenvalues and

eigenfuctions can be updated from the existing ones

when more measurements are available. This kind of

update costs less computing and hence is more efficient

than a new calculation.

3 KL-based conditional moment equations

The following governing equations are derived from the

conservation equations and Darcy’s relationship for the

transient water–oil phase flow (Abriola and Pinder 1985):

o2Plðx; tÞ
ox2

i

þ oZlðx; tÞ
oxi

oPlðx; tÞ
oxi

þ qlgdi1

� �

¼ exp �Zlðx; tÞ½ � /
oSlðx; tÞ

ot
� Flðx; tÞ

� �
; ð12Þ

where Pl(x,t) is the fluid pressure; l denotes liquids (l = w, o);

Sl (x,t) are the water (l = w) and oil (l = o) saturations; x is the

position vector in 2- or 3-D; Fl (x,t) is a source or sink

term; Zl (x,t) = ln kl (x,t), and kl (x,t) = k(x)krl (Sl)/ll is

liquid mobility, where k(x) is the intrinsic permeability of

porous media, krl is the water or oil relative permeability,

and ll is the liquid dynamic viscosity; ql is fluid density,

and / is the porosity of the media. di1 is the Krönecker

delta function, which equals 1 when i is 1 (upward

direction) or 0 otherwise. The initial and boundary

conditions are as follows:

Plðx; 0Þ ¼ Pl0ðxÞ; x 2 X; ð13Þ

Plðx; tÞ ¼ Pltðx; tÞ; x 2 CD; ð14Þ

niðxÞ exp Zlðx; tÞ½ � oPlðx; tÞ
oxi

þ qlgdi1

� �
¼ �Qlðx; tÞ; x 2 CN ;

ð15Þ

where Pl0(x) is the initial pressure in the domain X ;

Plt (x,t) is the prescribed pressure on Dirichlet boundary

segments CD ; Ql(x,t) is the prescribed fluid flux across

Neumann boundary segments CN; g is the gravity; n(x) is

the outward unit vector normal to the boundary CN.

van Genuchten (1980) model is used to describe the

relationship between saturation, capillary pressure, and

relative permeability:

krw ¼ �S
1=2

w 1� 1� �Sw
1=m

� �mh i2

; ð16Þ

kro ¼ 1� �Swð Þ1=2
1� �Sw

1=m
� �2m

; ð17Þ

Sw ¼ 1þ aPcð Þn½ ��m
; ð18Þ

where Sw ¼ Sw � Swrð Þ= 1� Swrð Þ is the effective water

saturation, Sw = 1 – So is water saturation, and Swr is the

residual water saturation, a is the pore size distribution

parameter, Pc = Po – Pw is the capillary pressure, n is the

van Genuchten fitting parameters and m = 1 – 1/n. In our

study, the log intrinsic permeability, log pore size distri-

bution parameter, and log van Genuchten fitting parameter

�n ¼ lnðn� 1Þ are considered random fields, and expanded

using the conditional KL decomposition described in the

last section. The governing Eqs. (12)–(15) are the

stochastic water–oil flow model, and are solved via

KL-based perturbation methods.
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The mathematical formulation of the Eqs. (12)–(15)

using the KLME method are presented by Chen et al.

(2006) in detail. The dependent variables, such as water

pressure Pw, are written as Pw = P(0)
w + P(1)

w + …, where

P(n)
w is the nth order term in terms of standard deviation of

soil properties. These nth order terms can be decomposed

in terms of a set of orthogonal Gaussian random variables

{nn} and deterministic coefficients. For example, P
ð1Þ
w ¼P1

j¼1 njP
ð1Þ
w;j ; where P(1)

w,j are deterministic coefficients.

Substituting these equations to the original stochastic

governing equations yields a series of deterministic gov-

erning equations as shown in Eqs. (19)–(22). In summary,

the idea of the KLME approach is to decompose stochastic

governing equations of flow into a series of deterministic

equations, which can be solved using existing numerical

simulators. The solutions are then assembled to obtain

explicit moments (means and variances) of the dependent

variables. The KL-based conditional moment equations can

be derived in the similar way. Zeroth order equations are

shown as

o2P
ð0Þ
w

ox2
i

þ oZ
ð0Þ
w

oxi

oP
ð0Þ
w

oxi
þ qwgdi1

" #
¼ C

ð0Þ
ow

eZ
ð0Þ
w

oP
ð0Þ
c

ot
� Fw

eZ
ð0Þ
w

;

ð19Þ

o2P
ð0Þ
o

ox2
i

þ oZ
ð0Þ
o

oxi

oP
ð0Þ
o

oxi
þ qogdi1

" #
¼ �C

ð0Þ
ow

eZ
ð0Þ
w

oP
ð0Þ
c

ot
� Fo

eZ
ð0Þ
w

;

ð20Þ

and first order equations are shown as

o2P
ð1Þ
w;j

ox2
i

þJwi

oZ
ð1Þ
w;j

oxi
þoZ

ð0Þ
w

oxi

oP
ð1Þ
w;j

oxi

¼C
ð0Þ
ow

eZ
ð0Þ
w

oP
ð1Þ
c;j

ot
�Z

ð1Þ
w;j

oP
ð0Þ
c

ot

" #
þ

C
ð1Þ
ow;j

eZ
ð0Þ
w

oP
ð0Þ
c

ot
� Fw

eZ
ð0Þ
w

Z
ð1Þ
w;j ; j¼1;M

ð21Þ

o2P
ð1Þ
o;j

ox2
i

þJoi

oZ
ð1Þ
o;j

oxi
þoZ

ð0Þ
o

oxi

oP
ð1Þ
o;j

oxi

¼�C
ð0Þ
ow

eZ
ð0Þ
o

oP
ð1Þ
c;j

ot
�Z

ð1Þ
o;j

oP
ð0Þ
c

ot

" #
�

C
ð1Þ
ow;j

eZ
ð0Þ
o

oP
ð0Þ
c

ot
� Fo

eZ
ð0Þ
o

Z
ð1Þ
o;j ; j¼1;M

ð22Þ

where Cowðx;tÞ¼/ 1�Swrð Þo�Sw

oPc
is a intermediate stochastic

variable, accounting for the derivative of effective water

saturation with respect to capillary pressure. Zl are the log

phase mobility of l phase (l = w, o), Fl are the l phase

source/sink terms, and Jli = qP(0)
l /qxi + ql gdi1. Please note

we omit (x, t) for spatio-temporal variables in the above

equations to simplify the expression. There is only one set

of zeroth order equations, but M sets of first order

equations. M is the number of terms needed to capture

the most of uncertainty. In our examples, we choose 200 of

M. Solve the series of equations, and we can construct the

mean and variance of liquid pressures,

Plðx; tÞh i � P
ð0Þ
l ðx; tÞ

D E
þ P

ð1Þ
l ðx; tÞ

D E
¼ P

ð0Þ
l ðx; tÞ; ð23Þ

CPl
ðx; y; tÞ ¼

XM

j¼1

P
ð1Þ
l;j ðx; tÞP

ð1Þ
l;j ðy; tÞ; l ¼ o;w: ð24Þ

The variances of fluid saturation can be found in the similar

way. This stochastic KLME water–oil flow model was

coded using Fortran.

4 Illustrative examples

In this section, we use the stochastic water-oil flow model

to examine how the random input variables and their

measurements influence stochastic behavior of fluid pres-

sure and saturation. We didn’t conduct Monte-Carlo

simulations for these cases in this study, since the accuracy

and efficiency of the developed stochastic model have been

demonstrated by Chen et al. (2006), and our goal is to use

it to investigate the problems of interest.

We assume the log intrinsic permeability Y(x), log

pore-size distribution parameter b(x), and log van

Genuchten fitting parameter �nðxÞ to be random fields

with separable exponential covariance functions as Eq.

(4). We consider a two-dimensional domain in a water–

oil flow system in hypothetic heterogeneous porous

medium. This vertical cross section is 3 m deep and

0.96 m wide, uniformly discretized into 50 · 16 square

elements of 0.06 m · 0.06 m. The no-flow conditions

are prescribed at two lateral boundaries. The water and

oil pressure are specified at the bottom of the domain

(Fig. 1). Oil is leaked into the domain at node X1 =

2.4 m, X2 = 0.48 m (black solid circle in Fig. 1) and a

constant precipitation rate is fixed at the top boundary.

The soil porosity is 0.5. The initial water saturation

around the oil leak point is about 0.98. The initial values

and boundary conditions represent a continuous DNAPL

leak into the nearly clean soil with constant precipitation

on the soil surface.

The primary fluids properties, soil properties, and

boundary conditions for the baseline case are listed in

Table 1. The measurements data are extracted from the

‘‘true’’ fields, generated from the unconditional Karhunen–

Loève decomposition (Eq. 1). Based on this unconditional

simulation of baseline case, we will conduct conditional

simulations with different number of random variables,
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measurements, and correlation length (Table 2). All the

cases are simulated to 1 day.

4.1 Number of measurements

Case 1 is the conditional counterpart of the unconditional

baseline case, with measurements of Y(x), b(x), and �nðxÞ at

the location of oil leak (0.48, 2.4 m), while Case 2 have

additional three measurements at X1 = 1.8, 1.2, 0.6 m along

the central vertical line. All the four measurement locations

are denoted with small circle in Fig. 1. To simulate condi-

tional Case 1 and Case 2, we first solve for the unconditional

eigenvalues and eigenfunctions, then compute conditional

ones using the algorithm described in Sect. 2. The first 50

terms of unconditional and conditional eigenvalues of

covariance of b(x) and their cumulations are shown in

Fig. 2, where condition 1 has only one measurement at

X1 = 2.4 m and condition 2 has all the four measurements.

It is seen that conditional eigenvalues with four measure-

ments is less than those with one measurement, which, in

turn, are less than those of the unconditional eigenvalues. It

indicates that variability of b(x) in Case 2 are smaller than

that in both Case 1 and unconditional baseline case. It is

shown that the series of eigenvalues is monotonously

decreasing and the first 50 terms can account for about 90%

of the total variability. Figure 3 compares the third term of

unconditional eigenfunctions, conditional eigenfunctions

with one measurement (condition 1) and four measurements

(condition 2). It is obvious that the measurements affect the

characteristic values and scales of eigenfunction fields.

The conditional means and variances of b(x) are shown

in Figs. 4 and 5, which will be used in Case 1 and Case 2.

The values of means around measurements are signifi-

cantly influenced by the measurements. The variability

decreases around the measurements in a radiated distribu-

tion, and the overall variability of b(x) used in Case 2 is a

little bit smaller than that used in Case 1, since Case 2 has

all the four measurements honored in the random fields.

The other two random variables YðxÞ; �nðxÞ have the similar

behaviors in the two cases.

Figure 6 compares the variances of water saturation

simulated from Baseline Case, Case 1, and Case 2. For the

unconditional case, the variances of water saturation

Fig. 1 Model domain

Table 1 Soil and fluid properties and boundary conditions

Parameter name Symbol Units Baseline Case

Water density qw kg/m3 997.81

Oil density qo kg/m3 1,500

Water viscosity lw Pa s 1.0 · 10–3

Oil viscosity lo Pa s 6.5 · 10–4

Mean intrinsic permeability \k[ m2 3.78 · 10–11

Mean pore size distribution \a[ 1/Pa 1.23 · 10–4

Mean fitting parameter n \n[ – 1.35

Variance of permeability rk
2 – 5.20 · 10–22

Variance of pore size distribution ra
2 – 1.55 · 10–10

Variance of fitting parameter n r2
n – 1.13 · 10–2

Coefficient of variation (k) CV(k) – 53.29%

Coefficient of variation (a) CV(a) – 10.03%

Coefficient of variation (n) CV(n) – 7.86%

Correlation length gk,ga,gn m 0.3

Lower boundary water pressure Pw Pa 1.40 · 105

Lower boundary oil pressure Po Pa 1.55 · 105

Upper boundary water flux Qw m/s 1.0 · 10–8

Oil leakage rate Fo kg/day 100

Table 2 Cases simulated in this study

Case Conditioned

variables

Number of

measurements

Correlation

length (m)

Oil source

(kg/day)

Baseline 0 – 0.3 100

Case 1 Y ;b; �n 1 0.3 100

Case 2 Y ;b; �n 4 0.3 100

Baseline I 0 – 0.3 10,000

Case 3 Y ;b; �n 1 0.3 10,000

Case 4 Y ;b; �n 4 0.3 10,000

Case 5 Y,b 1 0.3 10,000

Case 6 Y ; �n 1 0.3 10,000

Case 7 b; �n 1 0.3 10,000

Baseline II 0 – 0.15 100

Case 8 Y ;b; �n 1 0.15 100
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present a radiated downward distribution around the oil

leak location, indicating more uncertainty about the loca-

tion of the oil as the oil migrates downwards (oil is denser

than water). The variances at the bottom are zero since we

use constant pressure boundary at the bottom. For the

conditional cases (Case 1, 2), the conditioning effect is

very localized, reducing the uncertainty of water saturation

around the conditioning points. The variances of oil pres-

sure and capillary pressure along the central vertical line of

the domain for the three cases are shown in Fig. 7. It is

seen that the peak of the profile for Baseline Case at the oil

leak location are damped for Case 1 and 2, and the

reduction of variability extends to low part of the domain

for Case 2, since there are additional three measurements

below the measurement at the oil leak location. In addition,

the overall oil and capillary pressure variability are reduced

for the two conditional cases, compared to the uncondi-

tional case. The average variance of oil pressure across the

profile is reduced relatively by 92.50% in Case 1, and

94.13% in Case 2 from Baseline Case, respectively. For

capillary pressure, the figures are 93.21 and 93.50%,

respectively. That means more than 90% of the overall

uncertainty of oil or capillary pressure along the vertical

central line is reduced. In addition to the number of mea-

surements, the location of measurements is another factor

influencing the reduction of uncertainty. As is shown in

Fig. 7, the measurement at the oil leak location, where the

prediction is most uncertain, contributes much more to the

uncertainty reduction than the other three measurements.

We also examine the effect of the oil source term to the

prediction uncertainty. We increase the oil injection rate

from 100 kg/day in Baseline Case, Case 1 and 2 to

10,000 kg/day in Baseline Case I, Case 3 and 4. The

variance profiles of oil pressure and capillary pressure are

presented in Fig. 8. The variance profiles from the

unconditional Baseline Case I, conditional Case 3 with one

measurement, and Case 4 with four measurements show

the same behavior as those in the low oil injection rate

(Fig. 7), but the magnitude of is almost 4 orders greater. It

indicates that the strength of oil source term has the

overwhelming effect on the magnitude of prediction vari-

ance over the uncertainty of soil properties, from which the

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

0 10 20 30 40 5

 Index n

e
ulav

ne
gi

E
ev ital

u
m

u
C

0

s

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

0 10 20 30 40 50

Index n

e
ulav

ne
gi

E
s

Uncondition

Condition 1

Condition 2

(a) (b)

Uncondition

Condition 1

Condition 2

Fig. 2 Unconditional and

conditional a eigenvalues,
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Fig. 3 The third eigenfunctions

(n = 3) of a unconditional, b 1
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c 4 measurement conditional

simulations
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prediction variability originate. The role of the former one

in the prediction uncertainty is like amplifier, while the

latter is the sound source.

4.2 Number of conditioned random fields

All the three random fields are conditioned simultaneously

at one or four locations in Case 1 to 4. In this section, we

modify Case 3, and use one of unconditional �n; b; Y field in

Case 5, 6, 7 respectively, and leave the other two fields

conditional (Table 2). By simulating these cases, we

attempt to find the relative importance of the three random

variables to the prediction uncertainty.

Figure 9a presents the variance profile of oil pressure

along the central vertical line of the modeling domain for

Case 3, 5, 6 and 7. With b and �n conditioned at the oil leak

location, variances of oil pressure from Case 7 are smaller

than those from unconditional Baseline Case I (Fig. 8), but

well above those from Case 3, in which all the three ran-

dom variables Y; b; �n are conditioned at the oil leak

location. Compared to Case 5, in which Y,b are condi-

tioned, and Case 6, in which Y ; �n are conditioned, the

reduction of oil pressure variability is the smallest in Case

7. It seems that being conditioned on Y measurements is

more efficient in reducing uncertainty of oil pressure than

b; �n: The difference between conditioned b and �n is not so

large, although, the reduction of oil pressure variability

with b conditioned (Case 5) is more than that with �n

conditioned (Case 6).

The variances behavior around the oil leak location

(X1 = 2.4 m) presents different characteristic between the

cases in Fig. 9a. Case 7 is simulated with b and �n condi-

tioned at the oil leak location, but the oil pressure variances

still peak at that point. With additional Y conditioned in

Case 3, oil pressure variances reach a recess at the oil leak

location. In Case 5 and 6, with Y, b and Y ; �n conditioned

respectively, the peak of oil pressure variance profile along

central vertical line in Case 7 and the recess in Case 3 at

the oil leak location are flatten out. These behaviors indi-

cate that the measurement of Y can reduce the oil pressure

uncertainty a lot more than that of b or �n locally, and hence

the overall oil pressure uncertainty throughout the model-

ing domain.

The behavior of capillary pressure variance profile is

shown in Fig. 9b. Similar with oil pressure variance, Case

7 produces much larger capillary pressure variance than

Case 3, 5, and 6, although it was smaller than unconditional

case. In contrast to oil pressure variability, the capillary

pressure variability reduces less in Case 5 than in Case 6.

Also, the capillary pressure variability reaches the peak at

the oil leak location in Case 7. However, the profile of

capillary pressure variance in Case 5 and 6 arrives at a

recess at the oil leak location, like Case 3. In addition, the

variances of capillary pressure in Case 5 and 6 differ from

Case 3 less than those of oil pressure in Fig. 9a, indicating

the relative importance of uncertainty of intrinsic perme-

ability Y versus the pore size distribution b or the van

Genuchten fitting parameter �n to the uncertainty of capil-

lary pressure is bigger than the oil pressure.

4.3 Correlation lengths of random fields

To examine the influence of correlation lengths of random

soil properties, we conduct Baseline Case II and Case 8

with half correlation length of that in Baseline Case and

Case 1 (Table 2). Figure 10a shows that the distribution of
Fig. 4 The means of log pore size distribution b with a 1

measurement, and b 4 measurements

Fig. 5 The variances of log pore size distribution b with a 1

measurement, and b 4 measurements
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variances of water saturation for Baseline Case II is radial

centered at oil leak location, similar to that for Baseline

Case (Fig. 6a). Oil saturation variance can be proved to be

the same as the water saturation variances in such a water–

oil flow system. The magnitude of variance in Baseline

Case II is slightly smaller than that in Baseline Case, since

random fields with smaller correlation length reduce the

prediction variability (Zhang and Lu 2004). Another pos-

sible reason is because more terms are needed in KL to

capture the variability of random fields with shorter cor-

relation lengths. In Baseline Case II, we use the same

number of terms (200) as that in Baseline Case, so the final

assembles of variances are a little smaller. Similarly, the

variability of water saturation from Case 8 (Fig. 10b) is a

little smaller than that from Case 1 (Fig. 6b). Owing to the

measurements of the three of soil random fields at the oil

leak location, the variances fall substantially but very

localized around the conditioning points.

What should be noted in the two figures is that the

influencing region of the measurement at oil leak location

in Case 1 is larger than that in Case 8, which is expected,

since the larger correlation length indicated the larger

affecting area of each conditioning point, which would

reduce relatively the overall prediction variability more.

The average relative reduction of oil and capillary pressure

variability profile along central vertical line of conditional

Case 1 from unconditional Baseline Case are 92.50 and

93.21% (Fig. 7). The reductions of Case 8 from Baseline

Case II are 91.29 and 90.58% (Fig 11), which are smaller

than the counterpart with larger correlation length (Case 1

vs. Baseline Case). The peaks of oil pressure and capillary

Fig. 6 The contour map of

variances of water saturation

from a unconditional Baseline

Case, b conditional Case 1 with

one measurement, and

c conditional Case 2 with four

measurements

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0.0 0.5 1.0 1.5 2.0 2.5 3.0

X1 (m)

sec
naira

V

Po_Baseline Case

Po_Case 1

Po_Case 2

Pc_Baseline Case

Pc_Case 1

Pc_Case 2

Fig. 7 The variances along central vertical line (X2 = 0.48 m) of oil

and capillary pressures from unconditional Baseline Case, conditional

Case 1 and Case 2

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X1 (m)

sec
naira

V

Po_Baseline Case I

Po_Case 3

Po_Case 4

Pc_Baseline Case I

Pc_Case 3

Pc_Case 4

Fig. 8 The comparison of variances along central vertical line (X2 =

0.48 m) of oil and capillary pressures between unconditional Baseline

Case I, conditional Case 3 and Case 4
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pressure profiles at the oil leak location in Case 8 is

obvious in Fig. 11, while the peaks in Case 1 is almost

damped in Fig. 7. This demonstrates that small correlation

length of random input fields has small reduction of pre-

diction uncertainty locally, in addition to the small

influence area. Comparison between Figs. 7 and 11 indi-

cates that there are few differences of oil and capillary

pressure variability behavior other than that mentioned

above.

5 Summary and Conclusions

In modeling subsurface multiphase flow, the hydrogeologic

properties characteristic of large heterogeneity lead to huge

uncertainty of migration of flowing multiple fluids.

Reducing the uncertainty and making predictions as accu-

rate as possible are the major concerns for engineers in

remediation and reservoir simulation. In this study, we

manage to reduce the prediction variability by incorporat-

ing existing measurements of log intrinsic permeability,

pore size distribution, and van Genuchten parameters into

the unconditional KLME method for the water–oil flow

system developed earlier. The key idea of the algorithm is

to compute the conditional covariance of the random soil

properties via a kriging method, and decompose the con-

ditional covariance into the conditional eigenvalues and

eigenfunctions. After solving a series of decomposed

deterministic multiphase flow equations with these condi-

tional eigenvalues and eigenfunctions, we can assemble

prediction mean and variances of dependent variables

(water, oil and capillary pressure; water and oil saturation).

In this paper, we apply a conditional KLME method to

multiphase flow systems for the first time. The examples

are hypothetical and supposed only for proof of concept,

and far away from practical problems, although, it provides

a potential tool for remediation and petroleum reservoir

engineers to better understand the multiphase flow in het-

erogeneous subsurface environment, especially under such

a situation that some direct measurements of soil properties

are available. A series of simple cases were simulated to

investigate how the random soil properties and their mea-

surements influence the stochastic behavior of predictions,

which are summarized as follows:

1. The measurements can reduce the prediction variabil-

ity in the neighboring area remarkably, as well as the

overall prediction variability across the domain. More

measurements, more reduction of variability. Some

measurements in the key location (e.g. source term

location) can reduce the uncertainty much more

effectively.

2. In our study, the uncertainty of intrinsic permeability

seems to contribute more to the uncertainty of

prediction than the other two random variables do,

while the conditional pore size distribution and van

 Variance Po
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(a) (b)Fig. 9 The comparison of

variances along central vertical
line (X2 = 0.48 m) between

Case 4, Case 5, Case 6, and

Case 7 for a oil pressure, and

b capillary pressure

Fig. 10 The contour map of variances of water saturation from

a unconditional Baseline Case II, and b conditional Case 8
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Genuchten parameter field only make the slight

difference of uncertainty reduction of prediction. Thus,

adding measurements to the random intrinsic perme-

ability fields can reduce the prediction variability more

than the other two random fields.

3. The increase of source term strength can increase the

variances of prediction by several orders, and coun-

teract the uncertainty reduction of conditioned random

input variables many times. However, the source of

prediction uncertainty is from the random input, the

increase of source term strength only amplifies it.

4. Small correlation lengths of random fields can reduce

the prediction variability. Also, more terms in KLME

approach needed for smaller correlation length of

random fields to capture the uncertainty of fluid flow.

The smaller the correlation length, the smaller area of

one measurement can influence, and the smaller the

reduction of the uncertainty.
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